Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.091
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 112, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433139

RESUMEN

Down syndrome (DS) arises from a genetic anomaly characterized by an extra copy of chromosome 21 (exCh21). Despite high incidence of congenital diseases among DS patients, direct impacts of exCh21 remain elusive. Here, we established a robust DS model harnessing human-induced pluripotent stem cells (hiPSCs) from mosaic DS patient. These hiPSC lines encompassed both those with standard karyotype and those carrying an extra copy of exCh21, allowing to generate isogenic cell lines with a consistent genetic background. We unraveled that exCh21 inflicted disruption upon the cellular transcriptome, ushering in alterations in metabolic processes and triggering DNA damage. The impact of exCh21 was also manifested in profound modifications in chromatin accessibility patterns. Moreover, we identified two signature metabolites, 5-oxo-ETE and Calcitriol, whose biosynthesis is affected by exCh21. Notably, supplementation with 5-oxo-ETE promoted DNA damage, in stark contrast to the protective effect elicited by Calcitriol against such damage. We also found that exCh21 disrupted cardiogenesis, and that this impairment could be mitigated through supplementation with Calcitriol. Specifically, the deleterious effects of 5-oxo-ETE unfolded in the form of DNA damage induction and the repression of cardiogenesis. On the other hand, Calcitriol emerged as a potent activator of its nuclear receptor VDR, fostering amplified binding to chromatin and subsequent facilitation of gene transcription. Our findings provide a comprehensive understanding of exCh21's metabolic implications within the context of Down syndrome, offering potential avenues for therapeutic interventions for Down syndrome treatment.


Asunto(s)
Síndrome de Down , Humanos , Síndrome de Down/genética , Calcitriol/farmacología , Cromatina , Línea Celular , Daño del ADN
2.
Phytomedicine ; 126: 155177, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412667

RESUMEN

BACKGROUND: The mortality rate of liver cancer ranks third in the world, and hepatocellular carcinoma (HCC) is a malignant tumor of the digestive tract. Cucurbitacin B (CuB), a natural compound extracted from Cucurbitaceae spp., is the main active component of Chinese patent medicine the Cucurbitacin Tablet, which has been widely used in the treatment of various malignant tumors in clinics, especially HCC. PURPOSE: This study explored the role and mechanism of CuB in the suppression of liver cancer progression. METHODS: Cell Counting Kit-8 (CCK-8) and colony formation assays were used to detect the inhibitory function of CuB in Huh7, Hep3B, and Hepa1/6 hepatoma cells. Calcein-AM/propidium iodide (PI) staining and lactate dehydrogenase (LDH) measurement assays were performed to determine cell death. Mitochondrial membrane potential (Δψm) was measured, and flow cytometry was performed to evaluate cell apoptosis and cell cycle. Several techniques, such as proteomics, Western blotting (WB), and ribonucleic acid (RNA) interference, were utilized to explore the potential mechanism. The animal experiment was performed to verify the results of in vitro experiments. RESULTS: CuB significantly inhibited the growth of Huh7, Hep3B, and Hepa1/6 cells and triggered the cell cycle arrest in G2/M phage without leading to cell death, especially apoptosis. Knockdown of insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), a target of CuB, did not reverse CuB elicited cell cycle arrest. CuB enhanced phosphorylated ataxia telangiectasia mutated (p-ATM) and phosphorylated H2A histone family member X (γ-H2AX) levels. Moreover, CuB increased p53 and p21 levels and decreased cyclin-dependent kinase 1 (CDK1) expression, accompanied by improving phosphorylated checkpoint kinase 1 (p-CHK1) level and suppressing cell division cycle 25C (CDC25C) protein level. Interestingly, these phenomena were partly abolished by a deoxyribonucleic acid (DNA) protector methylproamine (MPA). Animal studies showed that CuB also significantly suppressed tumor growth in BALB/c mice bearing Hepa1/6 cells. In tumor tissues, CuB reduced the expression levels of proliferating cell nuclear antigen (PCNA) and γ-H2AX but did not change the terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) level. CONCLUSION: This study demonstrated for the first time that CuB could effectively impede HCC progression by inducing DNA damage-dependent cell cycle arrest without directly triggering cell death, such as necrosis and apoptosis. The effect was achieved through ataxia telangiectasia mutated (ATM)-dependent p53-p21-CDK1 and checkpoint kinase 1 (CHK1)-CDC25C signaling pathways. These findings indicate that CuB may be used as an anti-HCC drug, when the current findings are confirmed by independent studies and after many more clinical phase 1, 2, 3, and 4 testings have been done.


Asunto(s)
Ataxia Telangiectasia , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triterpenos , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/uso terapéutico , Puntos de Control del Ciclo Celular , Daño del ADN , Apoptosis , Línea Celular Tumoral , Proliferación Celular
3.
Basic Clin Pharmacol Toxicol ; 134(4): 472-484, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38368905

RESUMEN

In this study, the impact of chitosan (CS) and maitake (GF) nanoparticles towards the renal toxicity induced by Ehrlich ascites carcinoma (EAC) in vivo model was conducted. Besides benchmark negative control group, EAC model was constructed by intraperitoneal injection (i.p.) of 2.5 × 106 cells. Alongside positive control, two groups of EAC-bearing mice received 100 mg/kg of CS and GF nanoparticles/body weight daily for 14 days. The kidney function was conducted by measuring urea, creatinine, ions, (anti)/oxidative parameters and DNA damage. Also, measuring immunoreactivity of P53, proliferating cell nuclear antigen (PCNA), and B-cell lymphoma 2 (Bcl-2) and apoptosis protein. The outcomes illustrated notable kidney toxicity, which indicated by elevations in urea, creatinine, oxidative stress, DNA damage and induction of apoptosis. These events were supported by the drastic alteration in kidney structure through histological examination. Administration of CS and GF nanoparticles was able to enhance the antioxidant power, which further reduced oxidative damage, DNA injury, and apoptosis. These results indicated the protective and therapeutic role of biogenic chitosan and maitake nanoparticles against nephrotoxicity.


Asunto(s)
Carcinoma de Ehrlich , Quitosano , Grifola , Animales , Ratones , Ascitis/metabolismo , Quitosano/uso terapéutico , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/patología , Creatinina , Daño del ADN , Urea , Apoptosis
4.
BMC Complement Med Ther ; 24(1): 91, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365652

RESUMEN

BACKGROUND: Methanolic and chloroformic extract of Achillea millefolium and Chaerophyllum villosum were evaluated for HPLC analysis, genotoxic and antioxidant potential. MATERIALS AND METHODS: Genotoxic activity was carried out on human blood lymphocytes via comet assay and antioxidant activity was studied through DPPH method. RESULTS: The genotoxic potential of A. millefolium and C. villosum's methanolic and chloroformic extract was analysed using comet assay technique. Comet shaped human lymphocytes cells were observed when treated with different concentrations (50 mg/mL, 75 mg/mL, 100 mg/mL) of methanolic and chloroformic extract of both plants. Reading was taken on the basis of damaged DNA head and tail length. Greater the length of tail as compared to head, greater will be the damage and vice versa. Total comet score was obtained from A. millefolium subjected to different concentrations. After a time interval of 24 h both the extract showed dose dependant genoprotection with maximum genoprotectivity at 98.7 ± 12.7 and 116 ± 5.3 at 50 mg/100 mL for methanolic and chloroformic extract respectively. Similarly Total Comet score was obtained from C. villosum subjected to different concentrations of methanolic and chloroformic extract. After 24 h exhibited dose dependent genoprotection with maximum protectivity at 85.7 ± 22.0 and 101.7 ± 8.6 at 50 mg/100 mL for methanolic and chloroformic extract were determined. The antioxidant activity revealed that methanolic extract of A. millefolium showed highest antioxidant activity (84.21%) at 300 mg/ml after 90 min while the chloroformic extract of C. villosum exhibited highest (68.46%) antioxidant activity (59.69%) at 300 µg/ml after 90 min but less than the standard drug ascorbic acid (88.72%). Quantitative phytochemical screening revealed high percentage of alkaloids (27.4%), Phenols (34.5%), Flavonoids (32.4%) as compared to Tannins (12%) in methanolic extract of A.millefolium. While high percentage of alkaloids (31.4), Phenols (19.3%), Flavonoids (35.5%) as compared to Tannins (16.6%) in chloroformic extract of C. villosum. CONCLUSION: The present results showed that A. millefolium and C. villosum possess a number of important compounds and revealed genoprotective property which may be used to treat several genetic disorders such as alzeimer's disease in future (Grodzicki W, Dziendzikowska K, Antioxidants 9(3):229, 2020).


Asunto(s)
Achillea , Alcaloides , Humanos , Antioxidantes/química , Achillea/química , Taninos , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Fenoles/análisis , Daño del ADN
5.
Environ Sci Pollut Res Int ; 31(11): 17289-17298, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340299

RESUMEN

The present work explores the genotoxicity of the fungicides iprodione (IP) and tebuconazole (TB) using the Allium cepa assay as an in vivo biological model. Both short-term and long-term exposures were studied, revealing concentration- and time-dependent cytological and genotoxic effects. IP exhibited genotoxicity over a wider concentration range (5-50 µg/ml) and required 30 h of exposure, while TB showed genotoxicity at higher concentrations (10 and 30 µg/ml) within a 4-h exposure period. The study highlights the importance of assessing potential risks associated with fungicide exposure, including handling, disposal practices, and concerns regarding food residue. Moreover, the research underscores the genotoxic effects of IP and TB on plant cells and provides valuable insights into their concentration and time-response patterns.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Fungicidas Industriales , Hidantoínas , Cebollas , Triazoles , Meristema , Fungicidas Industriales/toxicidad , Daño del ADN , Raíces de Plantas , Aberraciones Cromosómicas
6.
Vet Parasitol ; 327: 110138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38286059

RESUMEN

One of the major public health problems is drug resistance in parasitic diseases. It is therefore important to find new active ingredients to combat parasites. Herbal products such as essential oils (EOs) may show promise in treating infections caused by gastrointestinal nematodes (GINs). This study investigated the in vitro anthelmintic activity of the EOs of Lavandula angustifolia and Quercus infectoria against Marshallagia marshalli. The in vitro study was based on an egg hatch test (EHT), adult and larval motility inhibition tests, DNA damage, and several biomarkers of oxidative/nitrosative stress, including superoxide dismutase [SOD], catalase [CAT], and glutathione peroxidase [GSH -Px], protein carbonylation [PCO], malondialdehyde [MDA], total antioxidant status [TAS], and nitric oxide levels [NO]. Different concentrations of Lavandula angustifolia and Quercus infectoria EOs (1, 5, 10, 25 and 50 mg/ml) were used to determine the anthelmintic effect on three stages of the life cycle of M. marshalli, i.e. eggs, larvae and adult parasites, for 24 hr. The results showed that EOs of L. angustifolia and Q. infectoria play an important role as anthelmintics. These essential oils significantly reduced the egg hatching and motility of larval and adult worms. This anthelmintic effect is dependent on concentration and time. Furthermore, the EOs of L. angustifolia and Q. infectoria caused oxidative/nitrosative stress (reduced SOD, GSH-Px and CAT and increased MDA, PCO and NO) and DNA damage, thereby providing significant antihelminthic effects. Based on the results, it seems that the EOs extracted from L. angustifolia and Q. infectoria may be effective in the control and treatment of M. marshalli infections. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.


Asunto(s)
Antihelmínticos , Lavandula , Aceites Volátiles , Plantas Medicinales , Trichostrongyloidea , Animales , Aceites Volátiles/farmacología , Estrés Nitrosativo , Óvulo , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Daño del ADN , Biomarcadores , Larva , Superóxido Dismutasa/farmacología , Aceites de Plantas/farmacología
7.
Food Chem Toxicol ; 184: 114437, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185402

RESUMEN

The use of nano-based dietary supplements is increasing around the world, as nanotechnology can help enhance nutrient bioavailability. ALP1018 is a newly developed iron-zinc complex supplement designed as a nanoformulation to improve the efficacy of iron and zinc supplementation. However, safety concerns have been raised, as there is no clear evaluation of ALP1018 toxicity. The goal of this study was to determine the potential mutagenicity and genotoxicity of ALP1018 through three standard screenings: the Ames test, which evaluates bacterial reverse mutations; the in vitro test of chromosomal aberration in Chinese hamster lung cells; and the in vivo micronucleus assay using ICR mice. ALP1018 showed no mutagenic effect, as no increase was observed in the presence or absence of metabolic activation (S9 mix) in revertant colonies on all the bacterial strains used in the Ames test. No structural chromosomal abnormalities were observed in the presence or absence of the S9 mix in mammalian cells used in the chromosomal aberration assay. In the micronucleus test, the frequency of micronucleated polychromatic erythrocytes was not significantly increased in mouse bone marrow cells. Based on these findings, we can conclude that ALP1018 is safe to use and has no mutagenic or genotoxic potential.


Asunto(s)
Aberraciones Cromosómicas , Daño del ADN , Cricetinae , Ratones , Animales , Pruebas de Mutagenicidad , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Cricetulus , Mutágenos/toxicidad , Suplementos Dietéticos/toxicidad , Hierro , Zinc
8.
Sci Rep ; 14(1): 1188, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216643

RESUMEN

Ku70 is a multifunctional protein with pivotal roles in DNA repair via non-homologous end-joining, V(D)J recombination, telomere maintenance, and neuronal apoptosis control. Nonetheless, its regulatory mechanisms remain elusive. Chicken Ku70 (GdKu70) cDNA has been previously cloned, and DT40 cells expressing it have significantly contributed to critical biological discoveries. GdKu70 features an additional 18 amino acids at its N-terminus compared to mammalian Ku70, the biological significance of which remains uncertain. Here, we show that the 5' flanking sequence of GdKu70 cDNA is not nearly encoded in the chicken genome. Notably, these 18 amino acids result from fusion events involving the NFE2L1 gene on chromosome 27 and the Ku70 gene on chromosome 1. Through experiments using newly cloned chicken Ku70 cDNA and specific antibodies, we demonstrated that Ku70 localizes within the cell nucleus as a heterodimer with Ku80 and promptly accumulates at DNA damage sites following injury. This suggests that the functions and spatiotemporal regulatory mechanisms of Ku70 in chickens closely resemble those in mammals. The insights and resources acquired will contribute to elucidate the various mechanisms by which Ku functions. Meanwhile, caution is advised when interpreting the previous numerous key studies that relied on GdKu70 cDNA and its expressing cells.


Asunto(s)
Antígenos Nucleares , Pollos , Daño del ADN , Autoantígeno Ku , Animales , Aminoácidos/genética , Antígenos Nucleares/metabolismo , Pollos/genética , Pollos/metabolismo , Clonación Molecular , Daño del ADN/genética , Reparación del ADN , ADN Complementario , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
9.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38255999

RESUMEN

Benzo[a]pyrene (B[a]P) is the most characterized polycyclic aromatic hydrocarbon associated with breast cancer. Our lab previously reported that the organosulfur compound (OSC), diallyl trisulfide (DATS), chemoprevention mechanism works through the induction of cell cycle arrest and a reduction in oxidative stress and DNA damage in normal breast epithelial cells. We hypothesize that DATS will inhibit B[a]P-induced cancer initiation in premalignant breast epithelial (MCF-10AT1) cells. In this study, we evaluated the ability of DATS to attenuate B[a]P-induced neoplastic transformation in MCF-10AT1 cells by measuring biological endpoints such as proliferation, clonogenicity, reactive oxygen species (ROS) formation, and 8-hydroxy-2-deoxyguanosine (8-OHdG) DNA damage levels, as well as DNA repair and antioxidant proteins. The results indicate that B[a]P induced proliferation, clonogenic formation, ROS formation, and 8-OHdG levels, as well as increasing AhR, ARNT/HIF-1ß, and CYP1A1 protein expression compared with the control in MCF-10AT1 cells. B[a]P/DATS's co-treatment (CoTx) inhibited cell proliferation, clonogenic formation, ROS formation, AhR protein expression, and 8-OHdG levels compared with B[a]P alone and attenuated all the above-mentioned B[a]P-induced changes in protein expression, causing a chemopreventive effect. This study demonstrates, for the first time, that DATS prevents premalignant breast cells from undergoing B[a]P-induced neoplastic transformation, thus providing more evidence for its chemopreventive effects in breast cancer.


Asunto(s)
Compuestos Alílicos , Neoplasias de la Mama , Ajo , Lesiones Precancerosas , Sulfuros , Humanos , Femenino , Antioxidantes , Especies Reactivas de Oxígeno , Daño del ADN , Lesiones Precancerosas/tratamiento farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Estrés Oxidativo
10.
DNA Repair (Amst) ; 134: 103628, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228016

RESUMEN

Oxidative stress-induced DNA base modifications, if unrepaired, can increase mutagenesis and genomic instability, ultimately leading to cell death. Cells predominantly use the base excision repair (BER) pathway to repair oxidatively-induced non-helix distorting lesions. BER is initiated by DNA glycosylases, such as 8-oxoguanine DNA glycosylase (OGG1), which repairs oxidatively modified guanine bases, including 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened formamidopyrimidine lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). The OGG1 protein contains a C2H2 zinc (Zn) finger DNA binding domain. However, the impact of dietary Zn deficiency on OGG1 catalytic activity has not been extensively studied. Zn is a common nutrient of concern with increasing age, and the prevalence of oxidative DNA damage is also concurrently increased during aging. Thus, understanding the potential regulation of OGG1 activity by Zn is clinically relevant. The present study investigates the impact of a range of Zn statuses, varying from severe Zn deficiency to exogenous Zn-supplementation, in the context of young and aged animals to determine the impact of dietary Zn-status on OGG1 activity and oxidative DNA damage in mice. Our findings suggest that nutritional Zn deficiency impairs OGG1 activity and function, without altering gene expression, and that aging further exacerbates these effects. These results have important implications for nutritional management of Zn during aging to mitigate age-associated DNA damage.


Asunto(s)
ADN Glicosilasas , Reparación del ADN , Animales , Ratones , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/metabolismo , Estrés Oxidativo , Zinc
11.
J Ethnopharmacol ; 323: 117694, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38163559

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The Bazhen decoction is one of the most extensively used Traditional Chinese medicine (TCM) prescriptions for treatment of aging related diseases. However, due to the complexity of the components, the pharmacological mechanism of Bazhen decoction is still limited. AIM OF THE STUDY: In this study, with the aim of helping the clinical precision medicine of TCM, we try out a systematic analysis for dissecting the molecular mechanism of complicated TCM prescription: Bazhen decoction. We identify the pharmacological mechanism of Bazhen decoction in telomere elongation as revealed by systematic analysis. MATERIALS AND METHODS: By RNA sequencing and transcriptome analysis of Bazhen decoction treated wild type cells, we reveal the transcriptome profile induced by Bazhen decoction. We utilized the cells derived from Werner syndrome (WS) mice, which is known to be dysfunctional in telomere elongation due to the deficiency of DNA helicase Wrn. By Western blot, qPCR, Immunofluorescence, flow cytometry, telomere FISH, and SA-ß-Gal staining, we verify the transcriptome data and confirm the pharmacological function of Bazhen decoction and its drug containing serum in telomere elongation and reversing progeroid cell senescence. RESULTS: We reveal that Bazhen decoction may systematically regulate multiple anti-aging pathways, including stem cell regulation, protein homeostasis, cardiovascular function, neuronal function, anti-inflammation, anti-DNA damage induced stress, DNA helicase activity and telomere lengthening. We find that Bazhen decoction and its drug containing serum could up-regulate multiple DNA helicases and telomere regulating proteins. The increased DNA helicases promote the resolving of G-quadruplex (G4) structures, and facilitate DNA replication and telomere elongation. These improvements also endow the cellular resistance to DNA damages induced by replication stress, and rescue the WS caused cellular senescence. CONCLUSIONS: Together these data suggest that Bazhen decoction up-regulate the expression of DNA helicases, thus facilitate G4 resolving and telomere maintenance, which rescue the progeroid cellular senescence and contribute to its anti-aging properties. Our data reveal a new molecular mechanism of Bazhen decoction in anti-aging related diseases via elongating telomere, this may shed light in the application of Bazhen decoction in multiple degenerative diseases caused by telomere erosion.


Asunto(s)
Síndrome de Werner , Animales , Ratones , Síndrome de Werner/genética , Daño del ADN , Telómero , Senescencia Celular , ADN Helicasas/genética
12.
Environ Toxicol ; 39(3): 1402-1414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37987225

RESUMEN

This study investigated the effects of Selenium (Se) on testis toxicity induced by Acrylamide (ACR) in rats. In our study, 50 male adult rats were used, and the rats were divided into five groups; control, ACR, Se0.5 + ACR, Se1 + ACR, and Se1. Se and ACR treatments were applied for 10 days. On the 11th day of the experimental study, intracardiac blood samples from the rats were taken under anesthesia and euthanized. Sperm motility and morphology were evaluated. Dihydrotestosterone, FSH, and LH levels in sera were analyzed with commercial ELISA kits. MDA, GSH, TNF-α, IL-6, and IL-1ß levels and SOD, GPx, and CAT, activities were measured to detect the level of oxidative stress and inflammation in rat testis tissues. Expression analysis of HSD17B1, StAR, CYP17A1, MAPk14, and P-53 as target mRNA levels were performed with Real Time-PCR System technology for each cDNA sample synthesized from rat testis RNA. Testicular tissues were evaluated by histopathological, immunohistochemical, and immunofluorescent examinations. Serum dihydrotestosterone and FSH levels decreased significantly in the ACR group compared to the control group, while LH levels increased and a high dose of Se prevented these changes caused by ACR. A high dose of Se prevented these changes caused by ACR. ACR-induced testicular oxidative stress, inflammation, apoptosis, changes in the expression of reproductive enzymes, some changes in sperm motility and morphology, DNA, and tissue damage, and Se administration prevented these pathologies caused by ACR. As a result of this study, it was determined that Se prevents oxidative stress, inflammation, apoptosis, autophagy, and DNA damage in testicular toxicity induced by ACR in rats.


Asunto(s)
Selenio , Testículo , Ratas , Masculino , Animales , Selenio/farmacología , Dihidrotestosterona/metabolismo , Dihidrotestosterona/farmacología , Acrilamida , Motilidad Espermática , Estrés Oxidativo , Antioxidantes/metabolismo , Inflamación/metabolismo , Hormona Folículo Estimulante/metabolismo , Apoptosis , Daño del ADN , Autofagia
13.
Protoplasma ; 261(1): 53-64, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37438649

RESUMEN

Leaves of Newbouldia laevis have been extensively used in solving problems associated with infertility and childbirth in many African countries. Yet, information is very limited on the DNA damaging potential of this plant. This study evaluated the cytogenotoxic effect of the aqueous extract of N. laevis leaf using prokaryotic models (Ames Salmonella fluctuation test using TA100 and TA98 strains of Salmonella typhimurium and SOS Chromotest with Escherichia coli PQ37) and eukaryotic model (Allium cepa root cells). Identification of the volatile organic compounds (VOCs) and phytochemical screening of the plant extract were also performed. Onion bulbs were grown on each concentration (1 to 50%; v/v, extract/tap water) of the extract for chromosomal aberrations and root growth analyses. Results of the Ames test indicated that the extract is mutagenic while the SOS Chromotest results showed good complementation to the Ames test results, although the E. coli PQ37 system showed slightly higher sensitivity in the detection of mutagenicity and genotoxicity of the extract. The plant extract was cytotoxic when compared to the control, inducing a significant (p < 0.05) concentration-dependent inhibition of root growth from 5 to 50% concentrations. At 50% concentration, the extract completely inhibited cell division in the A. cepa. Also, chromosomal aberration increased significantly (p < 0.05) in exposed onions from 5 to 20% concentrations. The mutagenicity and cytogenotoxicity recorded in this report were believed to be caused by the presence of VOCs such as 1,2,3-benzene-triol, 1,2-benzenediol, and 5-hydroxymethylfurfural, and alkaloids in the extract an indication of the cytogenotoxicity of the aqueous extract of N. laevis leaf even at low concentration.


Asunto(s)
Escherichia coli , Infertilidad Masculina , Masculino , Humanos , Pruebas de Mutagenicidad/métodos , Escherichia coli/genética , Daño del ADN , Mutágenos/farmacología , Cebollas , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
14.
J Toxicol Environ Health A ; 87(6): 245-265, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38115604

RESUMEN

The consumption of dietary supplements to enhance physical performance has increased significantly in the last century, especially thermogenic pre-workout supplements. Nevertheless, this industry has faced criticism for inadequate safety measures surveillance in regulatory issues regarding their products. The aims of our study were to investigate two pre-workout supplements with respect to (1) mutagenicity utilizing Salmonella/microsome assay; (2) genotoxicity employing cytokinesis-block micronucleus (CBMN) assay protocols; and (3) hepatocytoxicity using WST cell proliferation, activities of lactate dehydrogenase (LDH) and alkaline phosphatase using human liver carcinoma (HepG2) and mouse fibroblast (F C3H) cells. Oxidative stress was determined through glutathione (GSH) measurement and in silico for predictions of pharmacokinetics and toxicity for the most abundant isolated substances present in these supplements. Both supplements induced mutagenicity in all examined bacterial strains, especially in the presence of exogenous metabolism. Further, tested supplements significantly elevated the formation of micronuclei (MN) as well as other cellular phenomena. Concentration- and time-dependent curves were observed for hepatotoxicity in both studied cell lines. In addition, both supplements decreased levels of intracellular and extracellular GSH. In silico predictions showed that the isolated individual compounds failed to induce the observed outcomes. Our findings provide contributions to the molecular mechanisms underlying two pre-workout supplement-induced toxicity and the need for surveillance.


Asunto(s)
Aminas , Cafeína , Suplementos Dietéticos , Ratones , Animales , Humanos , Cafeína/farmacología , Ratones Endogámicos C3H , Suplementos Dietéticos/toxicidad , Estrés Oxidativo , Glutatión , Mutágenos/toxicidad , Daño del ADN
15.
Curr Med Sci ; 43(6): 1173-1182, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153628

RESUMEN

BACKGROUND AND OBJECTIVE: Although drugs are powerful therapeutic agents, they have a range of side effects. These side effects are sometimes cellular and not clinically noticeable. Vildagliptin/metformin hydrochloride is one of the most widely used oral antidiabetic drugs with two active ingredients. In this study, we investigated its harmful effects on the metabolic activation system in healthy human pancreatic cells "hTERT-HPNE", and we aimed to improve these harmful effects by natural products. To benefit from the healing effect, we used the unique natural products produced by the bees of the Anzer Plateau in the Eastern Black Sea Region of Turkey. METHODS: Cytotoxic and genotoxic effects of the drug were investigated by different tests, such as MTT, flow cytometry-apoptosis and comet assays. Anzer honey, pollen and propolis were analyzed by gas chromatography/mass spectrometry (G/C-MS). A total of 19 compounds were detected, constituting 99.9% of the samples. RESULTS: The decrease in cell viability at all drug concentrations was statistically significant compared to the negative control (P<0.05). A statistically significant decrease was detected in the apoptosis caused by vildagliptin/metformin hydrochloride with the supplementation of Anzer honey, pollen and propolis in hTERT-HPNE cells (P<0.05). CONCLUSION: This study can contribute to other studies testing the healing properties of natural products against the side effects of oral antidiabetics in human cells. In particular, Anzer honey, pollen and propolis can be used as additional foods to maintain cell viability and improve heal damage and can be evaluated against side effects in other drug studies.


Asunto(s)
Antineoplásicos , Productos Biológicos , Miel , Metformina , Própolis , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología , Vildagliptina/farmacología , Própolis/farmacología , Daño del ADN , Polen
16.
Int J Mol Sci ; 24(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958947

RESUMEN

Ionizing radiation (IR) and reactive oxygen species (ROS)-induced oxidative stress can cause damage to cellular biomolecules, including DNA, proteins, and lipids. These harmful effects can compromise essential cellular functions and significantly raise the risk of metabolic dysfunction, accumulation of harmful mutations, genome instability, cancer, accelerated cellular senescence, and even death. Here, we present an investigation of HeLa cancer cells' early response to gamma IR (γ-IR) and oxidative stress after preincubation of the cells with natural extracts of the resurrection plant Haberlea rhodopensis. In light of the superior protection offered by plant extracts against radiation and oxidative stress, we investigated the cellular defence mechanisms involved in such protection. Specifically, we sought to evaluate the molecular effects of H. rhodopensis extract (HRE) on cells subjected to genotoxic stress by examining the components of the redox pathway and quantifying the transcription levels of several critical genes associated with DNA repair, cell cycle regulation, and apoptosis. The influence of HRE on genome integrity and the cell cycle was also studied via comet assay and flow cytometry. Our findings demonstrate that HREs can effectively modulate the cellular response to genotoxic and oxidative stress within the first two hours following exposure, thereby reducing the severity of such stress. Furthermore, we observed the specificity of genoprotective HRE doses depending on the source of the applied genotoxic stress.


Asunto(s)
Lamiales , Oxidación-Reducción , Estrés Oxidativo , Extractos Vegetales/farmacología , Daño del ADN , Expresión Génica , Especies Reactivas de Oxígeno
17.
Sci Rep ; 13(1): 20567, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996508

RESUMEN

Due to a demonstrated lack of DNA repair deficiencies, clear cell renal cell carcinoma (ccRCC) has not benefitted from targeted synthetic lethality-based therapies. We investigated whether nucleotide excision repair (NER) deficiency is present in an identifiable subset of ccRCC cases that would render those tumors sensitive to therapy targeting this specific DNA repair pathway aberration. We used functional assays that detect UV-induced 6-4 pyrimidine-pyrimidone photoproducts to quantify NER deficiency in ccRCC cell lines. We also measured sensitivity to irofulven, an experimental cancer therapeutic agent that specifically targets cells with inactivated transcription-coupled nucleotide excision repair (TC-NER). In order to detect NER deficiency in clinical biopsies, we assessed whole exome sequencing data for the presence of an NER deficiency associated mutational signature previously identified in ERCC2 mutant bladder cancer. Functional assays showed NER deficiency in ccRCC cells. Some cell lines showed irofulven sensitivity at a concentration that is well tolerated by patients. Prostaglandin reductase 1 (PTGR1), which activates irofulven, was also associated with this sensitivity. Next generation sequencing data of the cell lines showed NER deficiency-associated mutational signatures. A significant subset of ccRCC patients had the same signature and high PTGR1 expression. ccRCC cell line-based analysis showed that NER deficiency is likely present in this cancer type. Approximately 10% of ccRCC patients in the TCGA cohort showed mutational signatures consistent with ERCC2 inactivation associated NER deficiency and also substantial levels of PTGR1 expression. These patients may be responsive to irofulven, a previously abandoned anticancer agent that has minimal activity in NER-proficient cells.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Sesquiterpenos , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/genética , Reparación del ADN , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/genética , Daño del ADN , Rayos Ultravioleta , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
18.
Plant Physiol Biochem ; 204: 108123, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37935068

RESUMEN

Graphene oxide (GO) is widely acknowledged for its exceptional biological and industrial applications. However, its discharge into the environment negatively impacts the ecosystem. This study aimed to investigate the toxicity of GO in Allium cepa root tip cells and the role of extracellular polymeric substances (EPS) in modulating its toxic effects. To evaluate toxicity, various endpoints like cell viability using Evans blue dye, cytotoxicity (mitotic index), genotoxicity (chromosomal aberrations), and oxidative stress assessments (total ROS, superoxide, hydroxyl radical production, and lipid peroxidation) were considered. The results suggest that pristine GO caused a dose-dependent increase in various toxicity parameters, especially the genotoxic effects. Oxidative stress generation by GO is proposed to be the principal mode of action. The EPS-corona formed on GO could potentially counteract the toxic effects, substantially reducing the oxidative stress within the cells.


Asunto(s)
Allium , Cebollas , Matriz Extracelular de Sustancias Poliméricas , Suelo , Ecosistema , Raíces de Plantas , Estrés Oxidativo , Índice Mitótico , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN
19.
Cell Metab ; 35(11): 2044-2059.e8, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37890478

RESUMEN

Amino acid metabolism has been actively investigated as a potential target for antitumor therapy, but how it may alter the response to genotoxic chemotherapy remains largely unknown. Here, we report that the depletion of fumarylacetoacetate hydrolase (FAH), an enzyme that catalyzes the final step of tyrosine catabolism, reduced chemosensitivity in epithelial ovarian cancer (EOC). The expression level of FAH correlated significantly with chemotherapy efficacy in patients with EOC. Mechanistically, under genotoxic chemotherapy, FAH is oxidized at Met308 and translocates to the nucleus, where FAH-mediated tyrosine catabolism predominantly supplies fumarate. FAH-produced fumarate binds directly to REV1, resulting in the suppression of translesion DNA synthesis (TLS) and improved chemosensitivity. Furthermore, in vivo tyrosine supplementation improves sensitivity to genotoxic chemotherapeutics and reduces the occurrence of therapy resistance. Our findings reveal a unique role for tyrosine-derived fumarate in the regulation of TLS and may be exploited to improve genotoxic chemotherapy through dietary tyrosine supplementation.


Asunto(s)
ADN , Neoplasias Ováricas , Humanos , Femenino , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Daño del ADN , Tirosina/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Fumaratos
20.
Environ Sci Pollut Res Int ; 30(55): 117952-117969, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37874518

RESUMEN

In this study, the toxicity induced by the alkylating agent methyl methanesulfonate (MMS) in Allium cepa L. was investigated. For this aim, bulbs were divided into 4 groups as control and application (100, 500 and 4000 µM MMS) and germinated for 72 h at 22-24 °C. At the end of the germination period root tips were collected and made ready for analysis by applying traditional preparation methods. Germination, root elongation, weight, mitotic index (MI) values, micronucleus (MN) and chromosomal abnormality (CAs) numbers, malondialdehyde (MDA) levels, superoxide dismutase (SOD) and catalase (CAT) activities and anatomical structures of bulbs were used as indicators to determine toxicity. Moreover the extent of DNA fragmentation induced by MMS was determined by comet assay. To confirm the DNA fragmentation induced by MMS, the DNA-MMS interaction was examined with molecular docking. Correlation and principal component analyses (PCA) were performed to examine the relationship between all parameters and understand the underlying structure and relationships among these parameters. In the present study, a deep neural network (DNN) with two hidden layers implemented in Matlab has been developed for the comparison of the estimated data with the real data. The effect of MDA levels, SOD and CAT activities at 4 different endpoints resulting from administration of various concentrations of MMS, including MN, MI, CAs and DNA damage, was attempted to be estimated by DNN model. It is assumed that the predicted results are in close agreement with the actual data. The effectiveness of the model was evaluated using 4 different metrics, MAE, MAPE, RMSE and R2, which together show that the model performs commendably. As a result, the highest germination, root elongation, weight gain and MI were measured in the control group. MMS application caused a decrease in all physiological parameters and an increase in cytogenetic (except MI) and biochemical parameters. MMS application caused an increase in antioxidant enzyme levels (SOD and CAT) up to a concentration of 500 µM and a decrease at 4000 µM. MMS application induced different types of CAs and anatomical damages in root meristem cells. The results of the comet assay showed that the severity of DNA fragmentation increased with increasing MMS concentration. Molecular docking analysis showed a strong DNA-MMS interaction. The results of correlation and PCA revealed significant positive and negative interactions between the studied parameters and confirmed the interactions of these parameters with MMS. It has been shown that the DNN model developed in this study is a valuable resource for predicting genotoxicity due to oxidative stress and lipid peroxidation. In addition, this model has the potential to help evaluate the genotoxicity status of various chemical compounds. At the end of the study, it was concluded that MMS strongly supports a versatile toxicity in plant cells and the selected parameters are suitable indicators for determining this toxicity.


Asunto(s)
Antioxidantes , Raíces de Plantas , Metilmetanosulfonato/toxicidad , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Meristema , Superóxido Dismutasa , Aberraciones Cromosómicas , Cebollas , ADN , Daño del ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA